
geospatialsuite: Comprehensive Geospatiotemporal Analysis and Multimodal Integration Toolkit
Source:R/00-package-info.R
geospatialsuite-package.Rdgeospatialsuite provides universal functions for geospatial analysis and reliable visualization that work with any region for multimodal data. Features include 60+ vegetation indices, efficient terra-based visualization, universal spatial mapping, dynamic crop analysis, water quality assessment, and publication-quality mapping with support for any geographic region and robust error handling.
Details
Key Features:
Universal Spatial Analysis:
Universal region support (states, countries, CONUS, custom boundaries)
Universal spatial join (works with ANY raster-vector combination)
Multi-dataset integration and temporal analysis
Spatial interpolation and terrain analysis
Advanced Vegetation Analysis:
60+ vegetation indices including NDVI, EVI, SAVI, ARVI, PRI, SIPI, etc.
Specialized crop analysis with stress detection and yield assessment
Auto band detection from multi-band satellite imagery
Quality filtering and temporal smoothing for time series
Reliable Visualization:
Universal mapping with auto-detection (
quick_map()function)Terra-based plotting using reliable terra::plot() and terra::plotRGB()
Interactive maps with leaflet integration (optional)
RGB composites with stretching algorithms
Comparison maps for before/after analysis
Quick Start Examples:
# One-line mapping (auto-detects everything!)
quick_map("mydata.shp")
# Auto-geocode data without coordinates
census_data <- data.frame(
state = c("Ohio", "Pennsylvania", "Michigan"),
median_income = c(58642, 61744, 59584)
)
spatial_data <- auto_geocode_data(census_data)
quick_map(spatial_data, variable = "median_income")
# Works with HUC codes too (any format: HUC_8, HUC-8, huc8)
watershed_data <- data.frame(
HUC_8 = c("04100009", "04100012"),
water_quality = c(72, 65)
)
huc_spatial <- auto_geocode_data(watershed_data)
quick_map(huc_spatial)
# Calculate multiple vegetation indices
indices <- calculate_multiple_indices(
red = red_band, nir = nir_band,
indices = c("NDVI", "EVI", "SAVI", "PRI")
)
# Comprehensive crop analysis
crop_analysis <- analyze_crop_vegetation(
spectral_data = sentinel_data,
crop_type = "corn",
analysis_type = "comprehensive"
)
# Enhanced NDVI calculation
ndvi_enhanced <- calculate_ndvi_enhanced(
red_data = red_raster,
nir_data = nir_raster,
quality_filter = TRUE
)
# Fast, reliable RGB plotting
plot_rgb_raster(satellite_data, r = 4, g = 3, b = 2,
stretch = "hist", title = "False Color")Recommended Optional Packages:
For enhanced features, consider installing these optional packages:
# For interactive mapping
install.packages("leaflet")
# For enhanced colors
install.packages(c("viridis", "RColorBrewer"))
# For advanced remote sensing (optional)
install.packages("RStoolbox")
# For multi-panel plots (optional)
install.packages("patchwork")Author
Olatunde D. Akanbi olatunde.akanbi@case.edu
Erika I. Barcelos erika.barcelos@case.edu
Roger H. French roger.french@case.edu